MUSCULOSKELETAL ALLOGRAFT TISSUE SAFETY

AMERICAN ACADEMY OF ORTHOPAEDIC SURGEONS
75TH ANNUAL MEETING
MARCH 5 - 9, 2008
SAN FRANCISCO, CALIFORNIA

COMMITTEE ON BIOLOGICAL IMPLANTS
TISSUE WORK GROUP

Prepared by:
MICHAEL J. JOYCE, M.D.
A. Seth Greenwald, D.Phil.(Oxon)
Scott Boden, M.D.
Scott Brubaker, CTBS (AATB)
Christine S. Heim, B.Sc.
BASIC AWARENESS

The use of musculoskeletal allograft tissue in reconstructive orthopaedic procedures has markedly increased over the last decade. (Figure 1)

Surgeon knowledge of tissue bank practices in donor consent and screening, infectious disease testing and processing is important when making the decision to use these allograft tissues.

The orthopaedic surgeon also has the responsibility to inform the patient about the risks, benefits, and alternatives of using allograft tissue.

This handout provides an overview of some of these issues.

What are the Commonly Used Allografts in Orthopaedic Procedures?

Bone
- Demineralized bone products (osteoinductive)
- Cortical/cancellous – powder, chips, wedges, dowels, crest, pegs, and screws
- Structural – cortical segments, shafts, long bones, pelvis, acetabulum
- Osteochondral long bone (cryoprotected cartilage)
- Ribs, mandible, calvarium, ear ossicles

Soft Tissue
- Patellar ligament and Achilles tendon (bone block), other assorted tendons
- Fascia lata, rotator cuff

Cartilage
- Meniscus, osteoarticular segments (fresh and cryoprotected), costal cartilage

Figure 1: Musculoskeletal allograft distribution. Source: AATB Annual Survey. (2004, 2005 numbers not available)

Figure 2: Bone-patellar tendon-bone allograft.

Figure 3: Processed iliac crest wedge.

Figure 4: Femoral allograft.
What are the Milestones in Tissue Banking?

1881 First human bone transplant using aseptic conditions
1925 Lexer: First reported large series of bone transplants (50% success rate)
1950 U.S. Navy Tissue Bank established in Bethesda, Maryland (George Hyatt, M.D.)
1955 Low temperature preservation of bone (reduction of antigenicity)
1960s Early reports of successful use of tissue implants
1972 Ottolenghi: Long bone/osteoarticular allograft series
1973 Parrish: Long bone allograft replacement series
1983 Mankin: Two hundred large bone allograft series
1984 First Standards for Tissue Banking published by the American Association of Tissue Banks (AATB)
1986 AATB Inspection/Accreditation Program initiated
1989 AATB Training and Certification Program for Tissue Bank Specialists (CTBS)
1993 FDA: Interim Rule, Human Tissue for Transplantation (FDA inspection of tissue banks initiated)
1994 AATB Inspection/Accreditation Program using contract, non-affiliated inspectors
 CDC: Guidelines for Preventing HIV Transmission Through Transplantation of Human Tissue and Organs
1997 FDA: Final Rule, Human Tissue for Transplantation
2001 FDA: Final Rule, Establishment Registration and Product Listing
 FDA: Proposed Rule, Good Tissue Practice; Inspection and Enforcement
2002 FDA: Guidance Document - Validation of Procedures for Processing of Human Tissues Intended for Transplantation
2003 More than 1,300,000 musculoskeletal allografts distributed by U.S. tissue banks
2007 100 AATB Accredited Tissue Banks (Consult AATB Web Site at www.aatb.org)

Figure 5: First depicted allograft transplantation. 12th Century painting of Saints Cosmas and Damian. (circa 3rd century)
Figure 6: AATB Standards.
Figure 7: 16-year-old with aneurysmal bone cyst; repair using bone graft cancellous chips.
What has Occurred in Government Regulation?

1968 Uniform Anatomical Gift Act (UAGA) provided to states for adoption and enactment
1984 National Organ Transplant Act
1985 HIV antibody testing (FDA) for blood donors
1990 HCV antibody testing (FDA) for blood donors
1993 FDA: Interim Rule, Human Tissue Intended for Transplantation
1995 The Joint Commission oversight of tissue handling (limited to Laboratory inspection manual)
 FDA: Proposed Approach to Regulation of Tissue Products (Tissue Action Plan)
1998 Medicare Requirements for hospital participation in organ/tissue donation
1999 FDA: Proposed Rule: Suitability Determination for Donation
2000 FDA: Blood Donor Testing of HIV RNA and HCV RNA by PCR (NAT)
 FDA: Guidance Document, Availability of Licensed Donor Screening Tests Labeled for Use with Cadaveric Blood Specimens
2001 FDA: Proposed Rule for Good Tissue Practice
 FDA: Final Rule: Establishment Registration and Listing, Manufacturers of Human Tissue Products
 OIG (Office of the Inspector General): 2 reports: Informed Consent; Oversight of Tissue Banking
2002 FDA: Guidance Document, Validation of Procedures for Processing of Human Tissue Intended for Transplantation
 FDA: Draft Guidance Document, Preventive Measures to Reduce the Possible Risk of Transmission of CJD and vCJD by Human Tissue (HCT/Ps)
2004 FDA: Final Rule and draft Guidance Document - Eligibility Determination for Donors of Human Cells, Tissues, and Cellular and Tissue-based Products (HCT/P) (the Rule was effective May 25, 2005)
 FDA: Final Rule, Current Good Tissue Practice (CGTPs) for HCT/P Establishments; Inspection and Enforcement (Effective May 25, 2005)
2005 The Joint Commission: Tissue Storage & Issuance Standards for hospitals and surgical centers
 FDA: Guidance Document, MedWatch Form FDA 3500A: Mandatory Reporting of Adverse Reactions Related to Human Cells, Tissues, and Cellular and Tissue-Based Products (HCT/Ps)
2007 FDA: Final Guidance Document - Eligibility Determination for Donors of HCT/Ps (Effective August 28, 2007)

What Practical Steps are Taken in Tissue Banking in Assessment and Processing?

Detailed inquiry into donor’s medical, social and sexual history (including autopsy if performed)

Donor Screening: Medical History and Behavioral Risk Assessment

At Time of Donation, Exclusionary Criteria:

- Active infection, sepsis, or TB
- History of systemic viral illness (Hepatitis, HIV, recent West Nile Virus, etc.)
- Untreated syphilis, Hansen’s Disease
- Certain autoimmune diseases
- Exposure to toxic substances that may affect tissues
- Rheumatoid arthritis, systemic lupus, polyarteritis nodosa, or sarcoidosis
- Clinically significant metabolic bone disease
- Clinically significant malignancy
- Implantation of dura mater or use of human derived pituitary growth hormone (Spongiform Disease, CJD)
- Risk factors associated with HIV (including Group O), viral hepatitis, hepatitis, sepsis, WNV, malaria, and vCJD
- Dementia of infectious or unknown etiology
Donor Screening: Physical Assessment
Examination of Potential Donors Includes Looking for Evidence of:
- Active infection: viral, bacterial, or fungal
- Sexually transmitted diseases such as genital ulcerative disease: herpes simplex, syphilis and chancroid
- Needle tracks (nonmedical); recent tattoos and piercings (within past 12 months)
- Lymph node enlargement
- Jaundice, icterus, hepatomegaly
- Blue/purple (gray/black) spots consistent with Kaposi’s sarcoma
- Evidence of anal intercourse (perianal lesions, insertion trauma)
- Unexplained oral thrush
- Trauma or infection to recovery sites
- Clinically significant skin lesions (rash, scabs)

Infectious Disease Testing
Tests Required by FDA; performed by CLIA-registered or CMS-approved laboratories:
- HIV 1/HIV 2 Antibody/HIV-1 NAT
- HB Core Antibody (total, IgM and IgG)
- HBsAg
- HCV Antibody/HCV NAT
- Syphilis test (T. pallidum)

Reference: FDA CGTP Rule and Donor Eligibility Final Guidance Document

AATB Required Additional Testing:
- HTLV-I/II Antibody

Expectations of Tissue Processing
- Audited or accredited facility following current Good Tissue Practice
- Possesses a Quality Control/Quality Assurance Program
- Elimination or reduction of blood, debris and cells from allografts to reduce disease transmission potential
- Validation of bacteriologic and virucidal washes and/or treatments
- Evaluation of bacteriologic bioburden (pre-processing and in-processing cultures to evaluate contamination)
- Possible use of gamma radiation 10-18 kilogray (10 kilogray ~ 1 Mrad) or more (non-terminal or terminal sterilization)
- Final product testing for bacteriologic contamination (swabs, immersion, or destructive testing)
- Potential discard of tissue or donor lot based on certain types of early bacteriologic contamination (Streptococcus Group A, Clostridium)
- Final review by tissue bank medical director of screening/testing prior to release of tissue for transplantation

Sterilization (Selected Tissues) for Microorganisms
- Gamma or E beam radiation 10-18 kilogray (10 kilogray ~ 1 Mrad) (these amounts or higher may possibly raise concern for integrity of tissues especially soft tissues)
What are the Episodes of Documented Disease Transmission?

Over the past two decades more than 10 million musculoskeletal allografts have been safely transplanted in the United States. Relatively few incidents of disease transmission have been reported:

Mycobacterial: Tuberculosis
- One case (four recipients): *James et al, JBJS 35B:578, 1953*

Bacterial:
- One case: *Tomford et al, JBJS 63A:244-248, 1981*
- Three cases: *Lord et al, JBJS 70A:369-376, 1988*

 Situation One:
 ♦ Death November 2001 Clostridium sordellii
 Fresh osteochondral femoral allograft segment in 23 y/o male

 Situation Two: Tissue from same donor - tissues were irradiated
 ♦ Patient A bone-tendon-bone; Pseudomonas aeruginosa, Staph. aureus, Enterococcus
 ♦ Patient B bone-tendon-bone; Pseudomonas aeruginosa

 Situation Three: Tissue from same donor - radiation planned but not accomplished
 ♦ Patient A bone-tendon-bone; Citrobacter werkmanii youngae; Group B Streptococci
 ♦ Patient B bone-tendon-bone; Klebsiella oxytoca/Hafnia alvei

- One case: bone-tendon-bone; Group A streptococcus: *MMWR 52(48):1173, December 5, 2003*
- 14 probable Clostridium cases: *Kainer et al, NEJM 350:2564-2571, 2004* Major findings include:
 ♦ Clostridium infections traced to allograft implantation (occurring between Jan 1988 to Mar 2002); all “sports medicine” allografts; all processed by one tissue bank not accredited by AATB
 ♦ Gaps identified include lack of pre-processing cultures and probability of false negative cultures due to culturing method used post-processing
 ♦ Two cases: soft tissue for ACL, Chryseobacterium meningosepticum, Rx antibiotics, grafts not removed: *AP article/Recall information, September, 2006*

Viral:
- Hepatitis B - One case: *Shutkin, JBJS 36A:160-162, 1954*
- Hepatitis C - One case: *Eggen and Nordbo, NEJM 326:411, 1992*

 Two cases: *Conrad et al, JBJS 77A:214-224, 1995*

- HIV - One case: *MMWR 37(39):597-599, 1988* (pre-HIV antibody testing)

What is the Message?

- Tissue availability is predicated on the gracious altruistic act of numerous donors and donor families.
- Estimated that 1.5 million musculoskeletal allografts distributed in U.S. in 2007.
- Disease transmission is rare when comparing reports of infection vs number of allografts distributed/yr.
- Conventional sterilization techniques used for metallic implants can adversely affect functional, biological and mechanical properties of soft tissue allografts.
- No reports of disease transmission using demineralized bone products.
- Some grafts can be treated with 10-18 kilogray (10 kilogray ~ 1 Mrad) or more to reduce/eliminate contamination. This may affect properties of the allograft depending upon the dosage.
- Inherent safety of the graft is based upon following Current Good Tissue Practice and AATB Standards:
 - Donor screening and physical assessment
 - Infectious disease testing
 - Validated processing techniques
 - Attention to quality control/quality assurance
- Suspected allograft-caused infections must be reported to the tissue source facility (Joint Commission Standards); can voluntarily be reported to FDA (www.fda.gov/medwatch/); or are reported to FDA if participating in the MedSun project.
- No transmission of disease has been confirmed to date involving BTS recall (approximately 15,800 grafts implanted)
- Need outcome studies to improve safety and efficacy.
- Orthopaedic surgeon needs to know “the tissue banker”.
- Surgeon/patient interaction regarding the risks and benefit of using allograft tissue in their procedure is requisite.